Theta characteristics of an algebraic curve

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta - Characteristics on Algebraic Curves

The theory of theta-characteristics is developed algebraically, so that it may be applied to possibly singular and/or reducible algebraic curves. The configuration of theta-characteristics on a curve is described in terms of its singularities, with applications to the geometry of plane quartic curves and the problem of Appolonius. Some results on Gorenstein local rings are appended. 0. Introduc...

متن کامل

Real Theta Characteristics and Automorphisms of a Real Curve

Let X be a geometrically irreducible smooth projective curve, defined over R, of genus at least two that admits nontrivial automorphisms. Fix a nontrivial automorphism σ of X. Assume that X does not have any real points. Then σ acts trivially on the set of all real theta characteristics of X if and only if X is hyperelliptic with σ being the unique hyperelliptic involution of X. Examples are gi...

متن کامل

Regular algebraic curve segments (I) - Definitions and characteristics

Ghandmjit L. Bajaj t Department of Computer Science, Purdue University, West Lafayette, IN 47907 In this paper (part one of a trilogy), we introduce the concept of a discriminating family of regular algebraic curves (real, nonsingular and connected). Several discriminating families are obtained by different characterizations of the zero contours of the Bernstein-Bezier (BB) form of bivariate po...

متن کامل

Formal Orthogonality on an Algebraic Curve

Formal orthogonality on an algebraic variety for polynomials is deened and studied. Examples are given. Vector orthogonal polynomials of dimension d are proved to be orthogonal with respect to points on the unit circle.

متن کامل

Global divisors on an algebraic curve

If L is a field and R a subring of L, we define the lattice Val(L,R) as the lattice generated by symbols VR(s) for s in L with the relations 1. 1 = VR(r) if r is in R 2. VR(s) ∧ VR(t) 6 VR(s+ t) 3. VR(s) ∧ VR(t) 6 VR(st) 4. 1 = VR(s) ∨ VR(s) if s 6= 0 Contrary to the Zariski lattice, we cannot in general simplify an expression VR(s1) ∧ . . . ∧ V (sn) to a single basic open VR(s). Two exceptions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales scientifiques de l'École normale supérieure

سال: 1971

ISSN: 0012-9593,1873-2151

DOI: 10.24033/asens.1209